
Programming Heterogeneous
(GPU) Systems

Jeffrey Vetter

http://ft.ornl.gov  vetter@computer.org

Presented to
Extreme Scale Computing Training Program

ANL: St. Charles, IL
2 August 2013

http://ft.ornl.gov/
http://ft.ornl.gov/
mailto:vetter@computer.org

http://keeneland.gatech.edu/kids-quick-start

Tutorial accounts use “UT-NTNLEDU” for an allocation in the job scheduler

http://keeneland.gatech.edu/kids-quick-start
http://keeneland.gatech.edu/kids-quick-start
http://keeneland.gatech.edu/kids-quick-start
http://keeneland.gatech.edu/kids-quick-start
http://keeneland.gatech.edu/kids-quick-start
http://keeneland.gatech.edu/kids-quick-start

3

Objectives

 Design and implement a set of performance and
stability tests for HPC systems with heterogeneous
architectures

 Implemented each test in MPI, OpenCL, CUDA to

 Evaluate the differences in these emerging programming models

 MIC to be released shortly

 OpenACC coming soon

 Sponsored by NSF, DOE

This chart shows the “out of the box” improvement from NVIDIA Fermi (M2090) to Kepler (K20m). Measured using CUDA 5.0 with

an identical host system. Largest improvements observed in compute intensive workloads. Modest increases for memory bound

kernels. No increase in DP FFT, suggests CUFFT not completely optimized for Kepler in release 5.0.

PI: Jeffrey S. Vetter, ORNL

Future Technologies Group The Scalable HeterOgeneous Computing (SHOC)
Benchmark Suite https://github.com/vetter/shoc

A. Danalis, G. Marin, C. McCurdy, J. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, and J.S. Vetter,

“The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite,” in Third Workshop on

General-Purpose Computation on Graphics Processors (GPGPU 2010)`. Pittsburgh, 2010

Accomplishments
 Consistent open source software releases

 Over 10000 downloads internationally since 2010

 Used in multiple procurements worldwide

 Used by vendors and researchers for testing, understanding

 Across diverse range of architectures: NVIDIA, AMD, ARM, Intel, even
Android

 Overview published at 3rd Workshop General-Purpose Computation on
Graphics Processing Units (GPGPU ‘10): ~100 citations to date

https://github.com/vetter/shoc
https://github.com/vetter/shoc

Motivation

5

Emerging Computing Architectures

• Heterogeneous processing
– Many cores

– Fused, configurable memory

• Memory
– 3D Stacking

– New devices (PCRAM, ReRAM)

• Interconnects
– Collective offload

– Scalable topologies

• Storage
– Active storage

– Non-traditional storage architectures
(key-value stores)

• Improving performance and
programmability in face of increasing
complexity
– Power, resilience

HPC (all) computer design is more fluid now than in the past two decades.

TH-2 System
 Compute Nodes have 3.432 Tflop/s

per node
– 16,000 nodes

– 32000 Intel Xeon cpus

– 48000 Intel Xeon phis

 Operations Nodes
– 4096 FT CPUs as operations nodes

 Proprietary interconnect TH2
express

 1PB memory (host memory only)
 Global shared parallel storage is

12.4 PB
 Cabinets: 125+13+24 = 162

compute/communication/storage
cabinets
– ~750 m2

 NUDT and Inspur

7

SYSTEM SPECIFICATIONS:

• Peak performance of 27.1 PF

• 24.5 GPU + 2.6 CPU

• 18,688 Compute Nodes each with:

• 16-Core AMD Opteron CPU

• NVIDIA Tesla “K20x” GPU

• 32 + 6 GB memory

• 512 Service and I/O nodes

• 200 Cabinets

• 710 TB total system memory

• Cray Gemini 3D Torus Interconnect

• 8.9 MW peak power

ORNL’s “Titan” Hybrid System:

Cray XK7 with AMD Opteron and

NVIDIA Tesla processors

4,352 ft2

Contemporary HPC Architectures
Date System Location Comp Comm Peak

(PF)

Power

(MW)

2009 Jaguar; Cray XT5 ORNL AMD 6c Seastar2 2.3 7.0

2010 Tianhe-1A NSC Tianjin Intel + NVIDIA Proprietary 4.7 4.0

2010 Nebulae NSCS

Shenzhen

Intel + NVIDIA IB 2.9 2.6

2010 Tsubame 2 TiTech Intel + NVIDIA IB 2.4 1.4

2011 K Computer RIKEN/Kobe SPARC64 VIIIfx Tofu 10.5 12.7

2012 Titan; Cray XK6 ORNL AMD + NVIDIA Gemini 10-20 9

2012 Mira; BlueGeneQ ANL SoC Proprietary 10 3.9

2012 Sequoia; BlueGeneQ LLNL SoC Proprietary 20 7.9

2012 Blue Waters; Cray NCSA/UIUC AMD + (partial)

NVIDIA

Gemini 11.6

2013 Stampede TACC Intel + MIC IB 9.5 5

2013 Tianhe-2 NSCC-GZ

(Guangzhou)

Intel + MIC Proprietary 54 ~20

9 Managed by UT-Battelle
 for the U.S. Department of Energy

AMD Llano’s fused memory hierarchy

K. Spafford, J.S. Meredith, S. Lee, D. Li, P.C. Roth, and J.S. Vetter, “The Tradeoffs of Fused
Memory Hierarchies in Heterogeneous Architectures,” in ACM Computing Frontiers (CF).
Cagliari, Italy: ACM, 2012.
Note: Both SB and Llano are consumer parts, not server parts.

10

Future Directions in Heterogeneous

Computing

• Over the next decade:
Heterogeneous computing will
continue to increase in
importance

• Manycore

• Hardware features
– Transactional memory

– Random Number Generators

– Scatter/Gather

– Wider SIMD/AVX

• Synergies with BIGDATA,
mobile markets, graphics

• Top 10 list of features to include
from application perspective.
Now is the time!

NVIDIA Echelon System Sketch

NVIDIA Echelon team: NVIDIA, ORNL, Micron, Cray, Georgia Tech, Stanford, UC-Berkeley, U Penn, Utah, Tennessee, Lockheed

Martin

DARPA UHPC Funded Project

Critical Implications for
Software, Apps, Developers

 Functional portability

 Performance portability

 Fast moving research,
standards, products

 Incompatibilities among
models

 Rewrite your code every
5 years

 Jobs!

12

14

Performance of Directive-based GPU

Programming Models Gaining on Hand-

Written CUDA

•Speedups are over serial on the CPU compiled with GCC v4.1.2 using option -O3, when the largest available
input data were used.

•Experimental Platform: CPU: Intel Xeon at 2.8 GHz GPU: NVIDIA Tesla M2090 with 512 CUDA cores at 1.15GHz

15

Keeneland Overview

Keeneland – Full Scale System
Initial Delivery system installed in Oct 2010

•201 TFLOPS in 7 racks (90 sq ft incl service area)

•902 MFLOPS per watt on HPL (#12 on Green500)

•Upgraded April 2012 to 255 TFLOPS

•Over 200 users, 100 projects using KID

Full scale system installed in Oct 2012

•792 M2090 GPUs contribute to aggregate system peak of 615 TF

ProLiant SL250 G8
(2CPUs, 3GPUs)

S6500 Chassis
(4 Nodes)

Rack
(6 Chassis)

M2090

Xeon E5-2670

Mellanox 384p FDR Infiniband Switch

Integrated with NICS
Datacenter Lustre and XSEDE

Full PCIeG3 X16
bandwidth to all GPUs

166

GFLOPS

665

GFLOPS

2327

GFLOPS

32/18 GB

9308

GFLOPS

55848

GFLOPS

614450

GFLOPS

http://keeneland.gatech.edu

J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,” IEEE

Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.

Keeneland System
(11 Compute Racks)

http://keeneland.gatech.edu/
http://dx.doi.org/10.1109/MCSE.2011.83

Keeneland Full Scale System Node Architecture

17

KIDS Node Architecture SL390

NVIDIA Fermi - M2090

• 3B transistors in 40nm

• 512 CUDA Cores

– New IEEE 754-2008
floating-point standard

• FMA

• 8 the peak double precision
arithmetic performance over NVIDIA's
last generation GPU

– 32 cores per SM, 21k threads per
chip

• 384b GDDR5, 6 GB capacity

– 178 GB/s memory BW

• C/M2090
– 665 GigaFLOPS DP, 6GB

– ECC Register files, L1/L2
caches, shared memory and
DRAM

19

KIDS v. KFS
Item KID (initial) KFS (full scale)

Started Operation Nov 2010 (upgraded April 2012) October 2012

Node HP Proliant SL390 HP Proliant SL250

Nodes 120 264

GPU M2090 (Fermi)

Upgraded from M2070 in Spring

2012

M2090 (Fermi)

GPUs 360 792

GPU Peak DP 665 665

GPU Mem BW 177 177

GPU DGEMM 470 470

Host PCI PCIeG2x16 PCIeG3x16

Interconnect Integrated Mellanox IB QDR Mellanox IB FDR

IB Ports/node 1 1

IB Switches Qlogic QDR 384 Mellanox FDR 384p Switch

Memory/node 24 32

Host CPU Westmere Sandy Bridge

GPU/CPU Ratio 3:2 3:2

Racks 7 13

DP Peak (GPUs only) (TF) 239 527

Heterogeneous Computing with GPUs

CPU + GPU Co-Processing

4 cores

CPU
48 GigaFlops (DP)

GPU
665 GigaFlops (DP)

Applications must use a mix of
programming models

MPI

Low overhead

Resource
contention

Locality

OpenMP, Pthreads

SIMD

NUMA

OpenACC, CUDA, OpenCL
Memory use,

coalescing
Data

orchestration
Fine grained
parallelism

Hardware
features

Keeneland Software Environment

• Integrated with NSF
XSEDE
– Including XSEDE and NICS

software stack (cf. Kraken)

• Programming
environments
– CUDA

– OpenCL

– Compilers
• GPU-enabled

– Scalable debuggers

– Performance tools

– Libraries

• Tools and programming
options are changing
rapidly

– HMPP, PGI, OpenMPC, R-
stream,

• Additional software
activities

– Performance and
correctness tools

– Scientific libraries

– Virtualization

23

25

A Very Brief Introduction to
Programming GPUs with

CUDA

nvidia-intro-to-cuda.pdf

nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf

Introduction to CUDA C

What is CUDA?

 CUDA Architecture

— Expose general-purpose GPU computing as first-class capability

— Retain traditional DirectX/OpenGL graphics performance

 CUDA C

— Based on industry-standard C

— A handful of language extensions to allow heterogeneous programs

— Straightforward APIs to manage devices, memory, etc.

 This talk will introduce you to CUDA C

Introduction to CUDA C

What will you learn today?

— Start from ―Hello, World!‖

— Write and launch CUDA C kernels

— Manage GPU memory

— Run parallel kernels in CUDA C

— Parallel communication and synchronization

— Race conditions and atomic operations

CUDA C: The Basics

Host

Note: Figure Not to Scale

 Terminology

 Host – The CPU and its memory (host memory)

 Device – The GPU and its memory (device memory)

Device

Hello, World!

int main(void) {

printf("Hello, World!\n");

return 0;

}

 This basic program is just standard C that runs on the host

 NVIDIA’s compiler (nvcc) will not complain about CUDA programs
with no device code

 At its simplest, CUDA C is just C!

Hello, World! with Device Code

__global__ void kernel(void) {

}

int main(void) {

kernel<<<1,1>>>();

printf("Hello, World!\n");

return 0;

}

 Two notable additions to the original ―Hello, World!‖

Hello, World! with Device Code
__global__ void kernel(void) {

}

 CUDA C keyword __global__ indicates that a function

— Runs on the device

— Called from host code

 nvcc splits source file into host and device components

— NVIDIA’s compiler handles device functions like kernel()

— Standard host compiler handles host functions like main()

 gcc

 Microsoft Visual C

Hello, World! with Device Code

int main(void) {

kernel<<< 1, 1 >>>();

printf("Hello, World!\n");

return 0;

}

 Triple angle brackets mark a call from host code to device code

— Sometimes called a ―kernel launch‖

— We’ll discuss the parameters inside the angle brackets later

 This is all that’s required to execute a function on the GPU!

 The function kernel() does nothing, so this is fairly anticlimactic…

A More Complex Example

 A simple kernel to add two integers:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

 As before, __global__ is a CUDA C keyword meaning

— add() will execute on the device

— add() will be called from the host

A More Complex Example

 Notice that we use pointers for our variables:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

 add() runs on the device…so a, b, and c must point to

device memory

 How do we allocate memory on the GPU?

Memory Management
 Host and device memory are distinct entities

— Device pointers point to GPU memory

 May be passed to and from host code

 May not be dereferenced from host code

— Host pointers point to CPU memory

 May be passed to and from device code

 May not be dereferenced from device code

 Basic CUDA API for dealing with device memory

— cudaMalloc(), cudaFree(), cudaMemcpy()

— Similar to their C equivalents, malloc(), free(), memcpy()

A More Complex Example: add()

 Using our add()kernel:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

 Let’s take a look at main()…

A More Complex Example: main()

int main(void) {

int a, b, c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = sizeof(int); // we need space for an integer

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = 2;

b = 7;

A More Complex Example: main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters

add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Parallel Programming in CUDA C

 But wait…GPU computing is about massive parallelism

 So how do we run code in parallel on the device?

 Solution lies in the parameters between the triple angle brackets:

add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

add<<< N, 1 >>>(dev_a, dev_b, dev_c);

 Instead of executing add() once, add() executed N times in parallel

Parallel Programming in CUDA C
 With add() running in parallel…let’s do vector addition

 Terminology: Each parallel invocation of add() referred to as a block

 Kernel can refer to its block’s index with the variable blockIdx.x

 Each block adds a value from a[] and b[], storing the result in c[]:

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 By using blockIdx.x to index arrays, each block handles different indices

Parallel Programming in CUDA C

Block 1

c[1] = a[1] + b[1];

 We write this code:
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 This is what runs in parallel on the device:

Block 0

c[0] = a[0] + b[0];

Block 2

c[2] = a[2] + b[2];

Block 3

c[3] = a[3] + b[3];

Parallel Addition: add()

 Using our newly parallelized add()kernel:

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 Let’s take a look at main()…

Parallel Addition: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition: main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N parallel blocks

add<<< N, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review

 Difference between ―host‖ and ―device‖

— Host = CPU

— Device = GPU

 Using __global__ to declare a function as device code

— Runs on device

— Called from host

 Passing parameters from host code to a device function

Review (cont)

 Basic device memory management

— cudaMalloc()

— cudaMemcpy()

— cudaFree()

 Launching parallel kernels

— Launch N copies of add() with: add<<< N, 1 >>>();

— Used blockIdx.x to access block’s index

Threads

 Terminology: A block can be split into parallel threads

 Let’s change vector addition to use parallel threads instead of parallel blocks:

__global__ void add(int *a, int *b, int *c) {

c[] = a[] + b[];

}

 We use threadIdx.x instead of blockIdx.x in add()

 main() will require one change as well…

threadIdx.x threadIdx.x threadIdx.xblockIdx.x blockIdx.x blockIdx.x

Parallel Addition (Threads): main()
#define N 512

int main(void) {

int *a, *b, *c; //host copies of a, b, c

int *dev_a, *dev_b, *dev_c; //device copies of a, b, c

int size = N * sizeof(int); //we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition (Threads): main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N

add<<< >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

threads

1, N

blocks

N, 1

Using Threads And Blocks

 We’ve seen parallel vector addition using

— Many blocks with 1 thread apiece

— 1 block with many threads

 Let’s adapt vector addition to use lots of both blocks and threads

 After using threads and blocks together, we’ll talk about why threads

 First let’s discuss data indexing…

Indexing Arrays With Threads And Blocks

 No longer as simple as just using threadIdx.x or blockIdx.x as indices

 To index array with 1 thread per entry (using 8 threads/block)

 If we have M threads/block, a unique array index for each entry given by

int index = threadIdx.x + blockIdx.x * M;

int index = x + y * width;

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7

Indexing Arrays: Example

 In this example, the red entry would have an index of 21:

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

blockIdx.x = 2

M = 8 threads/block

0 178 16 18 19 20 2121 3 4 5 6 7 109 11 12 13 14 15

Addition with Threads and Blocks

 The blockDim.x is a built-in variable for threads per block:

int index= threadIdx.x + blockIdx.x * blockDim.x;

 A combined version of our vector addition kernel to use blocks and threads:

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

 So what changes in main() when we use both blocks and threads?

Parallel Addition (Blocks/Threads): main()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for N integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition (Blocks/Threads): main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with blocks and threads

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Why Bother With Threads?

 Threads seem unnecessary

— Added a level of abstraction and complexity

— What did we gain?

 Unlike parallel blocks, parallel threads have mechanisms to

— Communicate

— Synchronize

 Let’s see how…

Dot Product

 Unlike vector addition, dot product is a reduction from vectors to a scalar

c = a ∙ b

c = (a0, a1, a2, a3) ∙ (b0, b1, b2, b3)

c = a0 b0 + a1 b1 + a2 b2 + a3 b3

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

c

Dot Product

 Parallel threads have no problem computing the pairwise products:

 So we can start a dot product CUDA kernel by doing just that:

__global__ void dot(int *a, int *b, int *c) {

// Each thread computes a pairwise product

int temp = a[threadIdx.x] * b[threadIdx.x];

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

Dot Product

 But we need to share data between threads to compute the final sum:

__global__ void dot(int *a, int *b, int *c) {

// Each thread computes a pairwise product

int temp = a[threadIdx.x] * b[threadIdx.x];

// Can’t compute the final sum

// Each thread’s copy of ‘temp’ is private

}

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

Sharing Data Between Threads

 Terminology: A block of threads shares memory called…

 Extremely fast, on-chip memory (user-managed cache)

 Declared with the __shared__ CUDA keyword

 Not visible to threads in other blocks running in parallel

shared memory

Shared Memory

Threads

Block 0

Shared Memory

Threads

Block 1

Shared Memory

Threads

Block 2

…

Parallel Dot Product: dot()

 We perform parallel multiplication, serial addition:

#define N 512

__global__ void dot(int *a, int *b, int *c) {

// Shared memory for results of multiplication

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// Thread 0 sums the pairwise products

if(0 == threadIdx.x) {

int sum = 0;

for(int i = 0; i < N; i++)

sum += temp[i];

*c = sum;

}

}

Parallel Dot Product Recap

 We perform parallel, pairwise multiplications

 Shared memory stores each thread’s result

 We sum these pairwise products from a single thread

 Sounds good…but we’ve made a huge mistake

Faulty Dot Product Exposed!

 Step 1: In parallel, each thread writes a pairwise product

 Step 2: Thread 0 reads and sums the products

 But there’s an assumption hidden in Step 1…

__shared__ int temp

__shared__ int temp

In parallel

Read-Before-Write Hazard
 Suppose thread 0 finishes its write in step 1

 Then thread 0 reads index 12 in step 2

 Before thread 12 writes to index 12 in step 1?

This read returns garbage!

Synchronization
 We need threads to wait between the sections of dot():

__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// * NEED THREADS TO SYNCHRONIZE HERE *

// No thread can advance until all threads

// have reached this point in the code

// Thread 0 sums the pairwise products

if(0 == threadIdx.x) {

int sum = 0;

for(int i = 0; i < N; i++)

sum += temp[i];

*c = sum;

}

}

__syncthreads()

 We can synchronize threads with the function __syncthreads()

 Threads in the block wait until all threads have hit the __syncthreads()

 Threads are only synchronized within a block

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4…

Parallel Dot Product: dot()
__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

__syncthreads();

if(0 == threadIdx.x) {

int sum = 0;

for(int i = 0; i < N; i++)

sum += temp[i];

*c = sum;

}

}

 With a properly synchronized dot() routine, let’s look at main()

Parallel Dot Product: main()
#define N 512

int main(void) {

int *a, *b, *c; // copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, sizeof(int));

a = (int *)malloc(size);

b = (int *)malloc(size);

c = (int *)malloc(sizeof(int));

random_ints(a, N);

random_ints(b, N);

Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review

 Launching kernels with parallel threads

— Launch add() with N threads: add<<< 1, N >>>();

— Used threadIdx.x to access thread’s index

 Using both blocks and threads

— Used (threadIdx.x + blockIdx.x * blockDim.x) to index input/output

— N/THREADS_PER_BLOCK blocks and THREADS_PER_BLOCK threads gave us N threads total

Review (cont)

 Using __shared__ to declare memory as shared memory

— Data shared among threads in a block

— Not visible to threads in other parallel blocks

 Using __syncthreads() as a barrier

— No thread executes instructions after __syncthreads() until all

threads have reached the __syncthreads()

— Needs to be used to prevent data hazards

Multiblock Dot Product

 Recall our dot product launch:

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>(dev_a, dev_b, dev_c);

 Launching with one block will not utilize much of the GPU

 Let’s write a multiblock version of dot product

Multiblock Dot Product: Algorithm

 Each block computes a sum of its pairwise products like before:

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*

*

*

*

+

a b

… …

sum

Block 1

Multiblock Dot Product: Algorithm

 And then contributes its sum to the final result:

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*

*

*

*

+

a b

… …

sum

Block 1

c

Multiblock Dot Product: dot()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[THREADS_PER_BLOCK];

int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {

int sum = 0;

for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];

}

}

 But we have a race condition…

 We can fix it with one of CUDA’s atomic operations

*c += sum;atomicAdd(c , sum);

vjj
Callout
was *c += sum;

Race Conditions

 Thread 0, Block 1

— Read value at address c

— Add sum to value

— Write result to address c

 Terminology: A race condition occurs when program behavior depends upon

relative timing of two (or more) event sequences

 What actually takes place to execute the line in question: *c += sum;

— Read value at address c

— Add sum to value

— Write result to address c

 What if two threads are trying to do this at the same time?

 Thread 0, Block 0

— Read value at address c

— Add sum to value

— Write result to address c

Terminology: Read-Modify-Write

Global Memory Contention

0c 3

Block 0
sum = 3

Block 1
sum = 4

Reads 0

0

Computes 0+3

0+3 = 3 3

Writes 3

Reads 3

3

Computes 3+4

3+4 = 7 7

Writes 7

0 3 73

Read-Modify-Write

Read-Modify-Write

*c += sum

Global Memory Contention

0c 0

Block 0
sum = 3

Block 1
sum = 4

Reads 0

0

Computes 0+3

0+3 = 3 3

Writes 3

Reads 0

0

Computes 0+4

0+4 = 4 4

Writes 4

0 0 43

Read-Modify-Write

Read-Modify-Write

*c += sum

Atomic Operations

 Terminology: Read-modify-write uninterruptible when atomic

 Many atomic operations on memory available with CUDA C

 Predictable result when simultaneous access to memory required

 We need to atomically add sum to c in our multiblock dot product

 atomicAdd()

 atomicSub()

 atomicMin()

 atomicMax()

 atomicInc()

 atomicDec()

 atomicExch()

 atomicCAS()

Multiblock Dot Product: dot()

__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[THREADS_PER_BLOCK];

int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {

int sum = 0;

for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];

atomicAdd(c , sum);

}

}

 Now let’s fix up main() to handle a multiblock dot product

Parallel Dot Product: main()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for N ints

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, sizeof(int));

a = (int *)malloc(size);

b = (int *)malloc(size);

c = (int *)malloc(sizeof(int));

random_ints(a, N);

random_ints(b, N);

Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel

dot<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review

 Race conditions

— Behavior depends upon relative timing of multiple event sequences

— Can occur when an implied read-modify-write is interruptible

 Atomic operations

— CUDA provides read-modify-write operations guaranteed to be atomic

— Atomics ensure correct results when multiple threads modify memory

26

N-Body

N-Body Algorithms

• An N-body simulation
numerically approximates
the evolution of a system
of bodies in which each
body continuously
interacts with every other
body
– Galaxies
– Protein folding
– Molecular dynamics,

Materials Science
– Fluid flow
– Global illumination (for CG)

• Algorithms
– All-pairs interactions

• Computationally intense
• O(N2)
• Easily parallelized

– Usually use some sort of
cutoff radius and an
approximation for long
range forces

• Extensively studied for
decades
– Barnes-Hut, FMM, Particle-

mesh

vetter@computer.org 27

BASIC ALL-PAIRS N-BODY

vetter@computer.org 28

Example from H. Nguyen, GPU Gems 3: Addison-Wesley Professional, 2007.

Basic All-Pairs N-Body

• Each body has

– Position (x, y, z)

– Velocity (x, y, z)

– Mass

– Perhaps other attributes
based on specific
simulation

vetter@computer.org 29

Implementation Strategy

• Think of the all-pairs
algorithm as calculating
each entry f ij in an NxN
grid of all pair-wise
force

• Then, total force F i (or
acceleration a i) on
body i is obtained from
the sum of all entries in
row I (a reduction!)

• Abundant parallelism:
O(N2)

• But requires O(N2)
memory and needs BW

• Need to improve data
reuse to increase
computational intensity

vetter@computer.org 30

Alternate Strategy: Tiles

• Rather, use a tile, which is a square region of this grid
that has p rows and p columns

• Only 2p body descriptions are necessary to evaluate tile
(p can be optimized to fit into fast memory)

• Each row is evaluated sequentially

• But all p rows can be evaluated in parallel

vetter@computer.org 31

Body-Body Force Calculation (CUDA)

vetter@computer.org 32

Evaluating a Tile

• Each thread will be executing this routine

• shPosition is an array in shared memory

vetter@computer.org 33

Clustering Tiles into Thread Blocks

• Tiles must be sized to
balance parallelism with
data reuse

• Parallelism
– Enough work to keep thread

units busy and hide latency

• Reuse
– Grows w/ number of columns

• Balance
– Tile size determines register

space and shared memory

vetter@computer.org 34

Thread Block Execution

vetter@computer.org 35

Grid of Thread Blocks to Calculate All
Forces

• 1D grid of N/p
independent thread
blocks with p threads
each

vetter@computer.org 36

Performance Effects

vetter@computer.org 37

Caveat: This is the most simple
version of n-body

• Barnes-Hut
• Fast Multipole Method
• Particle Mesh, PPPE
• Neutral Territory (Hybrid)

– Integration step
parallelized by assigning
particles to processors
according to a partitioning
of space

– Force computation step
parallelized by pairs across
processors but may be
unrelated to particle-
processor assignments

• A common component of
many of these parallel
methods for computing
long-range forces is the 3-
D FFT for solving the
Poisson equation on a 3-D
mesh

vetter@computer.org 38

vetter@computer.org 39

OpenCL (by way of CUDA)

Basic Differences

CUDA
• use compiler to build kernels

• C language extensions (nvcc)
– also a low-level driver-only API

• buffer offsets allowed

• pointer traversal allowed

OpenCL
• build kernels at runtime

• API only; no new compiler
– API calls to execute kernel

• buffer offsets not allowed

• must use pointer arithmetic

40

• terminology
• syntax
• API calls
• compilation

Terminology

CUDA OpenCL

Thread Work-item

Thread block Work-group

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

41

Function Qualifiers

CUDA OpenCL

__global__ __kernel

__device__ …

42

CUDA OpenCL

__constant__ __constant

__device__ __global

__shared__ __local

Variable Qualifiers

Example API Calls

CUDA Version OpenCL Version

cudaMemcpy
clEnqueueReadBuffer/
clEnqueueWriteBuffer

cudaMalloc clCreateBuffer

(compile-time call to nvcc) clBuildProgram

(direct kernel invocation)
clSetKernelArg +

clEnqueueNDRangeKernel

43

Kernel Code Example

CUDA
__global__ void

vectorAdd(const float *a,

 const float *b,

 float * c)

{

 // Vector element index

 int nIndex = blockIdx.x *

 blockDim.x + threadIdx.x;

 c[nIndex] = a[nIndex] + b[nIndex];

}

OpenCL
__kernel void

vectorAdd(__global const float *a,

 __global const float *b,

 __global float * c)

{

 // Vector element index

 int nIndex = get_global_id(0);

 c[nIndex] = a[nIndex] + b[nIndex];

}

44

Host Code Example

CUDA
float *data; // device memory allocated with cudaMalloc

int value;

myfunction<<<nblocks,nthreads>>>(data, value)

OpenCL
cl_mem data;

int value;

cl_kernel k = clCreateKernel(prog, “myfunction”, 0);

clSetKernelArg(k, 0, sizeof(cl_mem), (void*)&data);

clSetKernelArg(k, 1, sizeof(int), (void*)&int);

clEnqueueNDRangeKernel(cmdQueue, k, 1, 0, &worksize, 0, 0, 0, 0);

45

Other Resources

• OpenCL:

– http://www.khronos.org/opencl/

• OpenCL for CUDA programmers:

– http://developer.amd.com/zones/openclzone/
programming/pages/portingcudatoopencl.aspx

– http://developer.download.nvidia.com/OpenCL/
NVIDIA_OpenCL_JumpStart_Guide.pdf

• Conversion tools:

– CU2CL

– Swan

46

http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

Advanced Optimization
Topics

SINGLE-GPU OPTIMIZATION
TECHNIQUES

48

Host Motherboard Layout

49

DDR DRAM

CPU

PCIe slot

Discrete GPU PCB Layout

Image from http://techreport.com/articles.x/14168

GDDR DRAM

GPU

50

CUDA, OpenCL Optimization
• Minimize data transfers across PCI-Express bus

– Very expensive: e.g. 5GB/s PCIe versus 100GB/s for device
– Can be asynchronous; overlap communication with computation

• Coalesce memory reads (and writes)
– ensure threads simultaneously read adjacent values
– effectively uses GPU memory bandwidth

51

0 1 2 3 4 5 ……. data:

thread: t0 t1 t2 t3

GOOD: GPU can read values for

all threads in a single chunk

data:

thread: t0 t1 t2 t3

BAD 0 1 2 3 4 5 …….

0 1 2 3 4 5 ……. data:

thread: t0 t1 t2

BAD

CUDA, OpenCL Optimization

• Shared memory is fast, local to a group of threads

• When access patterns are irregular:
– perform coalesced reads to shared memory

– synchronize threads

– then access in any pattern

52

0 1 2 3 4 5 …….

thread t0 t1 t2 t3 t4 t5 t6 t7

6 7 8

0 1 2 3 4 5 6 7

Global memory …….

Shared memory

thread t0 t1 t2 t3 t4 t5 t6 t7

CUDA, OpenCL Optimization

• Unroll loops to minimize overhead

– GPU kernel compilation not yet mature here

• Execute more than one item per thread

– further increase computational density

– remember: maintain coalescing

• e.g. stride by grid size

*Many presentations, whitepapers detail these aspects of optimization.

53

Accelerating Compiler Optimization

• Similar concepts apply

• Relying on compiler for a lot:

– coalescing: you might be able to help by modifying
your array layouts

– unrolling, tiling, shared memory: some compilers
are better than others, some offer unroll+jam
pragmas, some offer shared memory pragmas

– minimizing data transfers: most offer directives to
specify allocation and transfer boundaries

54

OPTIMIZATIONS ON HETEROGENEOUS
SYSTEM NODES

55

Keeneland’s Multi-GPU Nodes

• KIDS is a dual-I/O-hub node architecture

– Allows full PCIe bandwidth to 3 GPUs and 1 NIC

56

PCIe x16

PCIe x16

CPU

CPU

GPU

GPU

RAM

RAM

RAM

RAM

RAM

RAM

Infiniband

IOH

IOH
GPU

PCIe x16

PCIe x8

Sharing GPUs on Keeneland

• Simultaneous PCIe bandwidth to all 3 GPUs

57

NON-UNIFORM MEMORY ACCESS

58

Non-Uniform Memory Access

• Node architectures result in Non-Uniform Memory
Access (NUMA)
– Point-to-point connections between devices

– Not fully-connected topologies

– Host memory connected to sockets instead of across a bus

59

NUMA Can Affect GPUs and Network Too

60

• DL160
• Single I/O Hub
• PCIe switch connects GPUs

• SL390
• Dual I/O Hub
• No PCIe switch

Older node architecture with single I/O hub but no NUMA effects between CPU and GPU/HCA

KIDS node architecture with dual I/O hub but NUMA effects

NUMA Control Mechanisms

• Process, data placement tools:

– Tools like libnuma and numactl

– Some MPI implementations have NUMA controls
built in (e.g., Intel MPI, OpenMPI)

• numactl usage:
 numactl [--interleave=nodes] [--preferred=node]
 [--physcpubind=cpus] [--cpunodebind=nodes]
 [--membind=nodes] [--localalloc] command
 numactl [--show]

 numactl [--hardware]

61

numactl on KIDS

[meredith@kid107]$ numactl -show
policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11
cpubind: 0 1
nodebind: 0 1
membind: 0 1

62

“NUMA Nodes” on KIDS nodes
63

CPU
Node

0

CPU
Node

1

GPU 1

GPU 2

RAM

Node

0

RAM

Node

1

Infiniband

IOH

IOH
GPU 0

Physical
CPUs 0-5

Physical
CPUs 6-11

numactl on KIDS

[meredith@kid107]$ numactl --hardware
available: 2 nodes (0-1)
node 0 size: 12085 MB
node 0 free: 11286 MB
node 1 size: 12120 MB
node 1 free: 11648 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

64

OpenMPI with NUMA control

Use mpirun to execute a script:

mpirun ./prog_with_numa.sh

In that script (prog_with_numa.sh) launch under numactl:
if [[$OMPI_COMM_WORLD_LOCAL_RANK == "0"]]

then

 numactl --membind=0 --cpunodebind=0 ./prog –args

else

 numactl --membind=1 --cpunodebind=1 ./prog –args

fi

65

How much Does NUMA Impact
Performance?

• Microbenchmarks to focus on individual node
components

• Macrobenchmarks to focus on individual
operations and program kernels

• Full applications to gauge end-user impact

66

Spafford, K., Meredith, J., Vetter, J. Quantifying NUMA and Contention Effects in Multi-

GPU Systems. Proceedings of the Fourth Workshop on General-Purpose Computation on

Graphics Processors (GPGPU 2011). Newport Beach, CA, USA.

Meredith, J., Roth, P., Spafford, K., Vetter, J. Performance Implications of Non-Uniform

Device Topologies in Scalable Heterogeneous GPU Systems. IEEE MICRO Special

Issue on CPU, GPU, and Hybrid Computing. October 2011.

Data Transfer Bandwidth

• Measured bandwidth of data transfers between CPU socket 0 and the GPUs

67

CPU-to-GPU GPU-to-CPU

SHOC Benchmark Suite

• What penalty for “long” mapping?

• Rough inverse correlation to computational intensity

68

Full Applications

• With one application task, performance penalty for using incorrect mapping (e.g.,
CPU socket 0 with GPU 1)

• With two application tasks, performance penalty for using mapping that uses “long”
paths for both (e.g., CPU socket 0 with GPU 1 and CPU socket 1 with GPU 0)

69

HPL Linpack

• Runtimes on KIDS under 3 pinning scenarios

70

NUMA and Network Traffic

• Have to worry about not only process/data
placement for CPU and GPU, but also about
CPU and Infiniband HCA

71

Thread Splitting

• Instead of 1 thread that controls a GPU and
issues MPI calls, split into two threads and bind
to appropriate CPU sockets

72

“NUMA Nodes” on KFS nodes
73

CPU
Node

0

CPU
Node

1

GPU 1

GPU 2

RAM

Node

0

RAM

Node

1

Infiniband

GPU 0

Physical
CPUs 0-7

Physical
CPUs 8-15

KIDS/KFS NUMA Penalty: OpenCL Bandwidth

74

0.0 GB/s

1.0 GB/s

2.0 GB/s

3.0 GB/s

4.0 GB/s

5.0 GB/s

6.0 GB/s

7.0 GB/s

Download Upload Download Upload

KIDS KFS

Same NUMA Node

Cross NUMA Node

KIDS/KFS NUMA Penalty: OpenCL Latency

75

0.0 μs

1.0 μs

2.0 μs

3.0 μs

4.0 μs

5.0 μs

6.0 μs

7.0 μs

8.0 μs

9.0 μs

10.0 μs

11.0 μs

Download Upload Download Upload

KIDS KFS

Same NUMA Node

Cross NUMA Node

KIDS/KFS GPU Transfer Performance

• New Sandy Bridge CPUs (on KFS) have PCIe directly attached

• Bandwidth
– Absolute performance is similar

– Download NUMA penalty virtually eliminated

– Upload NUMA penalty somewhat reduced

• Latency
– Absolute latency improves

– Download/upload NUMA penalty reduced

76

GPU DIRECT

77

GPU Direct

• Transferring data between GPUs in a scalable
heterogeneous system like KIDS is expensive

– Between GPUs in different nodes

– Between GPUs in the same node

78

The Problem with Inter-Node Transfers

• Data is in device memory of GPU on one node,
needs to be transferred to device memory of GPU
on another node

• Several hops:
– Data transferred from GPU memory to GPU buffer in

host memory
– Data copied from GPU buffer to

IB buffer in host memory
– Data read by IB HCA using

RDMA transfer
– Repeat in reverse on other end

79

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

GPUDirect

• NVIDIA and Mellanox developed an approach for allowing
others to access the GPU buffer in host memory

• Eliminates the data copy from GPU buffer to IB buffer
– Eliminates two system memory data copy operations (one on

each end)
– Keeps host CPU out of the data path
– Up to 30% performance improvement (according to NVIDIA)

80

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

GPUDirect 2.0: Improving Transfer
Performance Within a Node
• Similar problem when transferring data from one GPU

to another within the same node

• Old way:
– Copy data from GPU 1 to host memory

– Copy data from host memory to GPU 2

• New way:
– Copy data from GPU 1 to GPU2 without host CPU

involvement

• Integrates well with Unified Virtual Addressing feature
(single address space for CPU and 1+ GPUs)

• Available since CUDA 4.0

81

Current GPUDirect support on KIDS

• Currently active on KIDS for GPU1GPU2

– 2.8 GB/s normally, 4.9 GB/s with GPUDirect

82

CPU
Node

0

CPU
Node

1

GPU 1

GPU 2

RAM

Node

0

RAM

Node

1

Infiniband

IOH

IOH
GPU 0

Using GPUDirect

• General strategy:

– GPU-GPU copies

• Use cudaMemcpy with two device pointers

• Enable peer access in CUDA to allow direct GPU-GPU
– even allows inter-GPU access within CUDA kernels

– Host-device copies

• Allocated any host memory as pinned in CUDA

• CUDA driver puts this in user-pageable memory,
virtual address space

– May need to “export CUDA_NIC_INTEROP=1”
for InfiniBand to share this with CUDA

83

Checking GPUDirect for GPU1  GPU2

1. Are devices using Tesla Compute Cluster driver?
• cudaDeviceProp prop1, prop2;
• cudaGetDeviceProperties(&prop1, 1);
• cudaGetDeviceProperties(&prop2, 2);
• check prop1.tccDriver==1 and prop2.tccDriver==1

2. Do devices support peer access to each other?
• int access2from1, access1from2;
• cudaDeviceCanAccessPeer(&access2from1, 1, 2);
• cudaDeviceCanAccessPeer(&access1from2, 2, 1);
• check access2from1==1 and access1from2==1

84

Enabling GPUDirect for GPU1  GPU2

3. Enable device peer access both directions:
• cudaSetDevice(1);

• cudaDeviceEnablePeerAccess(2,flags); //flags=0

• cudaSetDevice(2);

• cudaDeviceEnablePeerAccess(1,flags); //flags=0

4. Example: send data directly from GPU2 to GPU1:
• float *gpu1data, *gpu2data;

• cudaSetDevice(1);

• cudaMalloc(&gpu1data, nbytes);

• cudaSetDevice(2);

• cudaMalloc(&gpu2data, nbytes);

• cudaMemcpy(gpu1data, gpu2data, cudaMemcpyDefault);

85

MPI AND GPU TASK MAPPING

86

How to combine GPUs and MPI?

• Use 1 MPI task per CPU core?

– Simplest for an existing MPI code

• particularly if they are not threaded

– Either time share GPUs …

• performance can vary, especially with more tasks/GPU

– … or only use GPUs from some MPI tasks

• introduce load balance problem

87

How to combine GPUs and MPI?

• Use 1 MPI task per GPU? Per CPU socket?

– thread/OpenMP/OpenCL to use more CPU cores

– ratios like 3GPU:2CPU add complexity

• pinning 3 tasks to 2 CPU sockets makes using 12 cores hard

• optimal NUMA mapping may not be obvious

– can use 1 task for 2 GPUs, leave 3rd GPU idle

• with 2 I/O hubs, bandwidth is probably sufficient

– can leave CPU cores idle

• for codes that match GPUs well, this can be a win

• recent NVIDIA HPL results show benefits of this approach

88

How to combine GPUs and MPI?

• Use 1 MPI task per compute node?

– With work, can be highly optimized:

• Best use of GPUDirect transfers (GPU-GPU, GPU-NIC)

• Can use numactl library within the task

– Very complex – must handle:

• multiple GPUs in one task

• offload work for all CPU cores

• NUMA mapping is a challenge

– especially for automated threading like OpenMP

89

Bonus Slides

